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Multi scale nature of granular media:I t d ti Multi-scale nature of granular media:Introduction:

• The goal of this project is to create a computationally efficient• The goal of this project is to create a computationally efficient 
f k t i l t d l l f l diframework to simulate and analyze samples of granular media y p g
to study the effects of multi-scale fluctuations in materialto study the effects of multi scale fluctuations in material 

t ll b h iparameters on overall behavior.  
• Random field models are used to describe variability of theRandom field models are used to describe variability of the 

parameter (porosity in this case)parameter (porosity in this case).  
• Multi-scale techniques are employed to keep fine resolution q p y p

where it is needed in the analysis while reducing the overallwhere it is needed in the analysis while reducing the overall 
t ti l b d f l lcomputational burden of large samples.p g p

Th i f t St f d i th ti f i l ti i Figure from Andrade and Baker, 2007The primary focus at Stanford is the creation of a simulation program using 
Properties of the soil are encoded at the grain scale andMATLAB software which will be coupled with a finite element program from Properties of the soil are encoded at the grain scale and MATLAB software which will be coupled with a finite element program from 

collaborators at Northwestern University propagate up to the field scale.  Inhomogeneities at finer scales collaborators at Northwestern University. g g
may introduce local flaws which trigger instabilities at largermay introduce local flaws which trigger instabilities at larger 
scales which is what multi-scale methods aim to capturescales, which is what multi-scale methods aim to capture.

O fS Obtaining parameters for simulation:Data Structure: g p

A histogram of porosity data for aA histogram of porosity data for a 
sample of granular media reveals asample of granular media reveals a 
lognormal distribution Maximumlognormal distribution.   Maximum 
liklihood methods were used to 
estimate parameters to be used inestimate parameters to be used in 
the simulationthe simulation.

Modified figure from Andrade and Baker 2007 Porosity data for a sample of granular media was provided by 3S-R Labs

Spatial correlation in all directions within the sample was
Modified figure from Andrade and Baker, 2007 Porosity data for a sample of granular media was provided by 3S-R Labs,

Universite Joseph Fourier, Grenoble, France (obtained by x-ray tomography). Spatial correlation in all directions within the sample was 
determined by matching variogram models (sphericaldetermined by matching variogram models (spherical, 

The basic premise of the multi-scale structure is gaussian, and exponential) to the sample data.Gaussianp
shown here. Each point in the simulated grid is

g )Gaussian
shown here.  Each point in the simulated grid is 
actually an average value of the finest scale points Correlation between local averages is computed by:Sphericalactually an average value of the finest scale points 

ithin the space it occ pies The n mber of
Correlation between local averages is computed by:

n n

p

Exponentialwithin the space it occupies.  The number of ∑∑
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scales required, the resolution of each scale, and ∑∑
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i and j are inside the 
same area, while k Empirical ρq

which scale is to be considered the “finest” to ∑∑
= n navg2avg1,ρ ,

is in the other area.
p ρ

which scale is to be considered the finest  to 
optimize accuracy and efficiency will be evaluated ∑∑ jpoint i,point ρ
optimize accuracy and efficiency will be evaluated.

where the points in the summation are of the finest scale
= =i j1 1

where the points in the summation are of the finest scale, 
and ρpoint, point is calculated from the variogram.

)(1 h (h) i point, point g
)(1 hγρ −= , γ(h) = variogram

S ti l i l ti E l f t d l G i F dSequential simulation process: Example of generated sample: Going Forward:q p p g p g
As described previously this research aims toSamples will be generated as standard normal Areas anticipated to be
As described previously, this research aims to 
d i h b f l i d h

p g
random variables then transformed over to the target

Areas anticipated to be 
d hi h t i d

determine the number of scales required, the random variables, then transformed over to the target 
distribution by:

under high strain and resolution of each scale, and which scale is to be 

( )( )1
distribution by: adjacent cells with large 

,
considered the “finest” in order to optimize accuracy( )( )zFx Φ= −1

j g
gradients in the value of

considered the finest  in order to optimize accuracy 
and efficiency This research will also:( )( )zFx Φ gradients in the value of 

average porosity are
and efficiency.  This research will also:

x: value of porosity average porosity are 
th bdi id d d t •Dynamically couple the simulation with the finite

x: value of porosity
z: realization of standard normal variable then subdivided down to Dynamically couple the simulation with the finite 

element analysis to create a fully automated
z: realization of standard normal variable
Ф: implies standard normal CDF

1 the next scale.  The element analysis to create a fully automated F-1: inverse CDF of target distribution

The field is randomly populated one point at a time figure to the left is an program.y p p p
by the conditional multivariate normal distribution:

figure to the left is an 
example of a simulated •Validate results from each end by comparing full

( )( ) ( )
by the conditional multivariate normal distribution: example of a simulated 

l t i
•Validate results from each end by comparing full 

l lt t t l t t d if i t( ) ( )( ) ( )11 1~| ∑⋅∑⋅∑−⋅∑⋅∑= −− zNzZZ sampledi plane strain com- scale results to actual tests and verifying parameter ( ) ( )2122122212 1  ,~| ∑⋅∑⋅∑−⋅∑⋅∑= zNzZZ pression sample with a distributions to actual samples.
( )sampledZWh i t t i i ll i

p p
single scale subdivision

p
A fi l t it i th i ti t th t( )sampledZWhere is a vector containing all previous single scale subdivision.  

The diagonal band is the
As a final note, it is worth pointing out that once 

realizations, and: The diagonal band is the 
t d f il f

developed, these multi-scale tools will be able to ,
expected failure surface 

p
provide insight into other materials and phenomena ofZ (i): realization of std normal RV being generated

in this example. 
provide insight into other materials and phenomena of 
interest (such as fracture strength of steel or crushing

Z ( ): realization of std. normal RV being generated
Σ: partitioned covariance matrix p interest (such as fracture strength of steel or crushing 

t th f t ) b d th i t t h
~N(A,B): implies that z is being generated from a

normal distribution with mean A and variance B strength of concrete) beyond their context here.normal distribution with mean A and variance B


